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Solitons in anharmonic chains with power-law long-range interactions
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We study the influence of long-range interactions with distance dependericef the elastic coupling
constant on the properties of pulse solitons in a one-dimensional anharmonic chain. Introducing the approxi-
mations of small amplitude and long wavelength, we have arrived at the Boussinesq equatie5 fand the
Benjamin-Ono equation fos=4. For s>5 the soliton tails are exponential while for<%<5 they are
algebraic. Fos<3.5 there is an energy gap between the spectra of plane waves and the soliton states.
[S1063-651%98)00108-1

PACS numbs(s): 03.40.Kf, 62.30+d, 63.20.Ry

I. INTRODUCTION Rasmussef9] have shown that the introduction of power-
law LRI into the nonlinear Schobnger model produces very
The dynamics of nonlinear lattices and related solitonlikesimilar effects. It was also stat¢dO] that, although having
excitations have been intensively studied since the advent afery much in common, the power-law LRI system bears fea-
solitons(for reviews, see, e.gl.1-5]). It has been found that tures essentially different from those of the exponential law
anharmonic molecular chains with nearest-neighbor interad<called also Kac-Bakdrl1,17)) one. One-dimensional anhar-
tion (NNI) or next-NNI[6] can bear solitonlike compressive monic systems, in their turn, should be expected to have an
and supersonicgfor realistic interatomic potentiglsexcita-  analogous behavior.
tions which are solutions, in the long-wavelength approxima- The solitary excitations in anharmonic chains with har-
tion, of the Boussinesq or Korteweg—de Vrig&dV) equa- monic Kac-Baker LRI's have already been much studied
tions. The soliton excitations are very robust and propagatfl3—17. Remoissenet and Flytzanjis3] studied a renormal-
without energy loss. Moreover, their collisions are almostization of the solitonic parameters due to the effect of LRI's
elastic even beyond the range of validity of the continuumand they also investigated the effect of LRI's on the stability
approximation. The foregoing renders the soliton excitation®f long-wavelength plane waves. Tchawona, Kofane, and
important for the coherent energy transféi and recently Bokosah[14] studied the influence of the LRI on solitons in
they have been invoked in order to explain the energy transdiatomic chains and investigated both pulse and envelope
port in DNA [7]. solitons. Neuper, Gaididei, Flytzanis, and Mert¢h5—17
But the DNA molecule is known to contain charged investigated pulse solitons in anharmonic chains with cubic
groups with long-range Coulomb interactions between themor Toda NNI and exponentially decaying harmonic LRI’s.
For a general lattice consisting of uncharged molecular unit¥hey have demonstrated that the interplay of short- and long-
one can have a situation where the dipole moment is veryange interactions leads to the existence of two branches of
small while the quadrupole moment is significant. Thus thesolitons: low-velocity and high-velocity ones, separated by a
dominant interaction between neighbors will be agap. The low-velocity solitons exist at supersonic velocities
quadrupole-quadrupole interaction, but one must also takbelow some critical velocity. At the critical velocity the
into account dipole-dipole interactions due to their muchshape of the soliton changes drastically: instead of the usual
longer range. sech shape a crest soliton appears. This soliton is very simi-
The objective of the paper is to elucidate the effects oflar to the peak solitons which were discussed earlier in dif-
power-law long-range interactiofkRI) on the properties of ferent context$18—22. The high-velocity solitons are made
soliton excitations in anharmonic chains. The pioneering paup of two components: short- and long-range ones. The in-
per of Ishimori[8] on this subject already indicated an inter- terplay of these components leads to an unusual behavior of
esting feature of the power-law LRI system: namely, a crosssoliton amplitude and energy as a function of velocity.
over takes place from sech-shaped solitgméhich are  Bonart[23] investigated intrinsically localized modes, their
solutions to the Boussinesq or KdV equatiprmototype for  stability and optical absorption in a linear chain with long-
rapidly decreasing LRI, to algebraic solitofsdlutions to the range Coulomb interaction.
Benjamin-Ono equation and related opeygpical for sys- We demonstrate in this paper that power law LRI leads to
tems with slowly decaying LRI's. To be specific, Ishimori a drastic change of the soliton properties, compared to Kac-
studied nonlinear waves in a one-dimensional lattice with thdaker LRI's. Namely, there is only one type of solitons and
Lennard-Jones (2n) intermolecular potential and showed their tails can become algebraic. In a particular case the dy-
that the dynamics is governed by the Benjamin-Ono equationamics is governed by the Benjamin-Ono equation which is
in the casen=2 or by the Korteweg—de Vries equation for well known to possess algebraic soliton solutions. Unlike
n>4. Quite recently Gaididei, Mingaleev, Christiansen, and\NNI or Kac-Baker LRI's, it is possible to have a situation
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when the energy of the solitons does not vanish for velocities d2

close to the speed of sound. On the contrary, in this case — W, +2F(w,) —F (W, 1) —F(w,_1)

there is an energy gap between the spectra of plane waves dt?

and soliton states. The remainder of the paper is outlined as

follows. In Sec. Il we derive the equation of motion for the + E Jm—n(Wy,—W,)=0, 7
strain in the anharmonic lattice with power-law LRI using a m#n

guasicontinuum approach which is necessary in the case of
LRI [16,17]. We show that the dynamics of the system iswhere

governed by the Boussinesq equation only $or5. In the d

particular cases=4 it is described by the Benjamin-Ono F(W)Ed—WV(w)zw—wz. (8
equation. In Sec. lll we investigate the long-distance behav-

ior of the nonlinear excitations and show that the high-14 optain analytical solutions of EG7) we pass to the con-
velocity solltor;s have algebraic tails if the LRI's decay in,ym |imit treatingn as a continuous variablgn—x,
slower than I/°. In Sec. IV we develop a variational ap- w,(t)—w(x,t)] and keeping formally all terms in the Taylor

proach exploiting an exp-like function as trial function and expansion in Eq(7). Then the equation can be cast in the
show that fors<3.5 there is an energy gap between theoperator form

spectra of plane waves and the soliton states. In Sec. V we

describe the numerical method by which we obtained the o0y

soliton solutions in the previous sections. In Sec. VI we sum- dW(x,t)—4 smh’-<§> F(w(x,1))+3Q(s,d,)wW(x,t)=0,
marize our conclusions.

9

Il. SYSTEM AND EQUATIONS OF MOTION whered, andd, are the derivatives with respect xoandt,

) ) . _respectively, and the operator
We consider a chain of equally spaced particles of unit

mass whose displacements from equilibrium agé&) when * 1—coshmd,)
the equilibrium spacings are unity. The Hamiltonian of our Q(s,dx) =2 Z S (10
system is given by m=1 m

— can be expressed in the long wave lififtat is fork<1) as

=T+ +

H=T+Unn+Uir, D Hllows (see, e.g.[8]):
where 1
1 du2 Q(s,ik)~{(s—2)k*— 1—25(5—4)k4 for s>5, (11)
n
33 %) @

1
5,ik)~¢(3)k?+ —k* In|K], 12
is the kinetic energy and QI =£(3) 12 i (12

Q(s,ik)~{(s—2)k?— vglk[s™?

Unn=2 V(Uni1=Up) )
n s—3
+——k* for 3<s<5, (13
is the short-range part of the potential energy, with the po- 24(5—s)
tential between first neighbors
- ? 2 T, La
1 1 Q(4a|k)EFk _€|k| +ﬁk ) (14
— Tw2— —w3
V(w) 2W 3W . (4)
: L ; Q(3ik)~—kzln|k|+§k2jL ik4 (15
The long-range interaction is of the harmonic form ! 2 144" '
1 where
ULR:EE E ‘]m—n(un_um)zv )
n m>n 2175773/2
. . . V= , (16
with a power dependence of the elastic coupling constant I'(s/2)T((s+1)/2)coq ws/2)
Jn-n=J |m—n|~s (6) and{(s) is Riemann’s zeta function
on the distance between particles. Heris a parameter in- (s)= i nos 17)
troduced to cover different physical situations including the ¢ & '
nearest-neighbor approximatios=f ), dipole-dipole inter-
action (s=5), and the Coulomb interaction between charged=rom the dispersion relation for linear waves
particles of a chaing=3). ‘
The equations of motion for the relative displacements Q2(K) =4 sir?| = | +3Q(s,ik), (18)
Wp=Un4+1— U, are 2
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one gets the sound velocity

c=\1+J{(s—2). (19)

It should be remarked that increases with decreasing the For s=4, using the Hilbert transform

range parametes, and becomes infinite &= 3 (i.e., in the 1 (= f(y)dy

chains with charged particlesOn the other hand, it is well H{f(x)}= _pf , (29)

known that in the chains with NNI1,2] and Kac-Baker LRI T J-e YTX

[15-17 there are only supersonic solitons. Thus, since for

s=3 every velocity is subsonic, the question for the exis-where P denotes the Cauchy principal value, we can rewrite

tence of soliton solutions must be raised in this case. In thi&d. (14) in the form

paper we restrict ourselves to the case3. The nonlinear ) .

dynamics of a chain with long-range Coulomb interaction is RS PP

considered irf24]. Q4.7 6 9 GH&"Jr 24(7X' (30)
There are two cases when one can write down(Byin

a more convenient form, namely;>5 ands=4. First, con- Thus the equation of motior{9 becomes the Hilbert-

(UZ_C2)3/2. (28)

Hgor= V3Ms( c?— /:;_(S)

sider the case>5 for which the operator Boussinesq equation
» 1 4 2 22 I 4 2,2
Q(s,d¢)~=—{(S—2)d5— 1—25(3—4)(9)( (20 df —C°d5— ?Hax w(X,t)+dw(x,t)=0, (31)

has the same form as in the NNI approximation. In this casevhich can be reduced to the integrable Benjamin-Ono form.
the equation of motiort9) becomes the Boussinesq equationContrary to the former cases$5) this equation is well
known to have algebraic soliton solutions

92— c292— f—;ﬁf)w(x,twaﬁwz(x,t):o, (21 w
0
w(x,t)= ————, (32
where 1+ a?(x—vt)?
ws=1+J¢(s—4) for s>5 (22) with the soliton velocityv, the strain amplitude
is the dispersion parameter. It is well known that the Bouss- Wo=—2(v?—c?), (33
inesq equation is integrable with a sech-shaped soliton solu-
tion and the inverse width of the soliton
Wo 0'=i(v2—C2) (34)
w(x,t)= ———"——— (23 py :

cosf[a(x—vt)]

In contrast to Eq(26) for the cases>5, the kink amplitude

wherev is the soliton velocity, for s—4

3
Wo:_i(vz—cz) (24) A=— Ter, (39

is the strain amplitude, and o o
does not depend on the velocity Since the Hamiltoniafil)

3 of the system takes the form
o=1/—@?-c?) (25)
Ms -
H= 1 dx( (9,u)?+c?(d,u)?
is the inverse width of the soliton. The kink amplitude 2) ! X
® Jm 2 3
A=f w(z,t)dz=— \3usv?—c?) (26) - ?(&(U)(Hﬁxu)— 3 (W)™, (36)

vanishes when the soliton velocity nears the speed of soun#le energy of the solito(82) near the speed of sound is
Since the Hamiltoniarfl) of the system takes the form 202
w2c

3 (v?—c?). (37)

H..~
s 2 sol
(W= 3%,
(27) In the next section we extend these results and show that
the solitonlike solutions have algebraic tails in the entire in-

the energy of the solitof23) near the speed of sound is terval 3<s<5.

1 o0
H= 5] dx( (8u)2+c?(ayu)%—
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I1l. NONLINEAR EXCITATIONS AT HIGH VELOCITIES I'(s—2) 21—5\/;
GL(Syv7Z) =

Seeking solutions with a stationary profile(z)=w(x
—wvt) (v being the soliton velocifywe can write the equa-
tion of motion(7) as follows: J / [(s—2,alz|l/)

><|Z|s—2\1_ I'(s—2) 49

(ST (1+8)/2)(v%— )2

2

vzj—zzw(z)+2F(w(z))—F(w(z+ 1))—F(w(z—1))

wherel'(s,x) is the incomplete gamma functig@5].

So, only fors>5 does the Green functio®0) decay
exponentially for|z| —«. When 3<s<5 only for interme-
ﬂgz Im-—2(W(2) —w(m))=0. (38 diate distancedz| does the Green function behave in the
same way as in the system with short-range dispersion. But
for |z — the exponential decay is replaced by a power law.
This suggests that in the systems with the dispersive param-
eter s in the interval 3<s<5 there are two characteristic
length scales: the usual length scale of the Boussinesq soliton
W(z)=2 G(s,v,z—m) W3 (m)=G w?, (39 /s and the I_ength _sca_le coup_led with the existen_ce of the

m long-range dispersion interaction. Therefore we will seek a
solution of Eq.(39) as the sum

To investigate the asymptotic behavior of solitonlike solu-
tions it is convenient to rewrite E¢38) in the form

where
wW(2) =wg(2) +w(2), (46)
G 1 2[1-cogk)Je **dk wherews(2) is the short-range component of the strain and
(sv.2)= 2] . 2[1-cogk)]+JQ(s,ik) — v2k> w, () is the long-range one. Hems(z) will dominate the

(40) strain in the center, whilev (z) will dominate in the tails.
Inserting Eq.(46) into Eq. (39 yields

is the Green function. For larde| the main contribution to
the integral of Eq(40) is given by small values df. Hence

we can extend the integration over the whole axis and, apg
plying Jordan’s lemma and taking into account E¢fsl)—

wstw, =(Ggt+Gp) (Wi+2wsw +w?).  (47)

ssuming that the functiowg(z) satisfies the equation

. . S .
(>12),avsve can write the Green functid@d0) for |z|>1 ands wg=Gg (W5+2wg W, ) (48
we obtain from Eq(47) an equation fomw (z) in the form
1 . .
G(s,v,2)=— me_ 27, (41) w =Gsw? + G (W3+2wgw +wD). (49)
~'S
It is seen from Eqgs(41) and (48) that the equation for the
where short-range component may be represented in an equivalent
form
V= — (42 HMs 2 2
sT 12(v2— c?) - 1—2azws(z)+[v2—cz+ 2w, (2) Jwg(2) +wg(2)=0.

(50)
is the length scale of the Boussinesq soliton withdeter- i i
mined by Eq.(22). We are interested in the case when the'V& Solve Eq(50) using the multiple-scale meth¢ae] (see

intensity of the long-range part of the dispersion interactiorl 17] for detail9, and obtain for the short-range component
is small: J<1 and/or the velocity of the soliton is high: ~ Ws(2) the expression

>c. In this case the Green functi@d0) for 3<s<5 can be 3

approximately represented in the fofsee the Appendix for ws(z)=— E[1,2_ c?+2w (2)]

detail9
G(s,0,2)=Gg(s,0,2)+ G (S,v,2) (43) R 1 1z — w(2)
WUy S\ Uy L Uy [} X sec 2/SJ'0dZ 1+ 2—v2_02 . (51)

where the short-range pa&g(s,v,z) of the Green function

coincides with the Green functio@1)—(42) but with The long-range part of the Green functief) is propor-

tional to the small parameter. Therefore neglecting terms
of the order ofJ"(n>1) one can linearize E¢49) and write

Js—3 !
pe=1l—=—— for 3<s<5, (44) approximately
25-s
w (2)~G W2~g(v2—cz)2G (s,0,2) (52)
and the long-range part of the Green function has the form L LTS 4 LAl
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amplitudes of the soliton tails. It is worth remarking that for
3<s<5 the amplitude of the soliton tails tends to a nonzero
value at high velocities.

IV. VARIATIONAL APPROACH

In what follows we shall develop a variational approach
to the investigation of the qualitative characteristics of the
solitons under consideration. It was shown in the preceding
section that the long-distance behaviorugz) depends on
the value of the dispersive paramegerOnly for s>5 are
the tails of u(z) exponential while fors<5 the tails are
algebraic. But the behavior for intermediate distances is de-
10 T I3 scribed by the sech-like functiof®1) which smoothly de-

n-vt pends on the dispersive parameterThis suggests looking

FIG. 1. Plot of minus strain at=0.1 andv?—c2=0.1 for dif-  for an approximate description of the system in the frame-
ferents obtained from numerical calculations. The soliton tails haveWork of variational approach with the trial function in the
a power dependence vs lattice site $s¢5. form

-w,(t)

where we also took into account the big difference in the
short-range scal&’s and the length scale of the long-range

part of the Green functiof®, (s,v,z). Substituting Eq(45)

into Eq. (52) we see that the asymptoticgz|(— =) of the  where
solitons at high velocities and<3s<5 is given by the ex-

pression 1 for x>0

0(x)= -1 for x<O. 9

uy(t) = %A(l—e’z"‘”’x(”‘)e(n—x(t)), (54)

W(Z)~— — 9Vrl(s-2) J_Z_ (53 In other words, we suppose here that the main contribu-
27TSI(sI2)T((s+1)/2) |2]® tion is due to the short-range exponential-like paytz) of
the solution. This assumption is confirmed by the good
Thus we can conclude here that only in the 5 do the agreement between the results of variational approach and
. : ; the numerical calculations.
tails of the solitons have the usual exponential form. In the
systems with long-range harmonic interactions withs3<5
the solitons have algebraic tails. Figure 1 shows the long- L=T—Unu—U (56)
distance behavior of soliton tails for different values of the NN ~LR»
range parametes. It is seen that the form of the tails pre- )
dicted by Eq.(53) is in good agreement with the results of We arrive at some effective Lagrangiaiix,x). In principle,
numerical simulations described in Sec. V. Moreover, Fig. 28uch Lagrangians demonstrate two qualitatively different
shows a good fit of Eq(53) to the numerically calculated types of motion, namely, a pinning of the excitation at some
particle and a moving of the excitation along the chain. But
ot ' . ' in our case, considering the supersonic solitons, we may re-
strict ourselves to the second case only. To be specific, let us
consider a soliton moving with an average veloaity c.
Thus the time dependent parameldt) allows the form
. X(t)=vt+ 5(t) where an average value gf[0< n(t)<1]
. equals3. We are interested now only in the average param-
° eters of the soliton motion, which can be obtained from mini-
. 1 mizing the action

~— 1T .1 xmdx .
25x107 | e 4 S= ?f dtL(X,X)Z—f —L(x,X)
0

TJxo x

Substituting Eq(54) into the Lagrangian

7.5x107 |

5.0x10° |

-w(100)

1 [x(m 1
00 - - . =—f dxL(x,v)=—(L), (57)
0.0 2.0 4.0 6.0 vT x(0) 1%

8.0

where the angle brackets denote the average value
FIG. 2. Amplitude in the soliton tail at a range of 100 lattice 9 9

sites forJ=0.1 ands=3.3 obtained from numerical calculations 1
(circles and its analytical high-velocity limifdashed lingfrom Eq. (f(t))= f dyf(z).
0

58
(53). (59)
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The kink amplitudeA and the inverse width of the soliton, To calculate the long-range part of the potential endf)y
o, are the variational parameters to be determined as funcwe use the discrete Fourier transform

tions of the soliton velocity. Substituting Eq(54) into Egs.

(2) and (3) we get

~ . 1 (= .
1 coshi20(1—-27)]( dx|? uk)=>, ek, u,==—| e *uk)dk, (61
T= EAZO'Z sinh(20) \H) (59 n 277[7#
d
an which allows us to rewrite Eq5) in the form
1, sint(o)
UNN_EA M cosh2o(1—-27)]
J (= ~
Ur=-—| dklu(k)|?Q(s,ik), 62
e Cosk[a(l—Zn)]}z) LR 477f_77 lu(k)|“Q(s,ik) (62
1 ink(o)
~3 3( 3”:‘;2“—;(;) coshi30(1-27)] where the spectrum functid@(s,ik) is defined by Eq(10).
Using
+{1-e“ cosr[a(l—zn)]}3). (60)
|
~ 1 2 4 costiog)cosho(1—27)]
WP =2A% T—coql) ™ cosh2o) —cosk)

(63

N 1+cosi2o)cosh20(1—2%)]—{cosH20)+cosh20(1— Zn)]}cos(k))
[cosh20) —cogk)]? '

we obtain for the long-range part of the potential energy 1 1 3
(Unny = EAZ( 1+5e 27— —(1-e %)

2 Vi¥os
1 1 3 1
u =—JA2(2 s—1)+F(e ?7,s—1) _ZA3 P e 20_ ~ (g_Qa20_ a4
LR= 7 & ( 3A 1+5e 80(9 8e e )|,
B 4 costiog)cosho(1—2n)]—cosh2a(1—-27)] (67
sinh(2
h(2o) and
><[5(5)—'2(92",3)]), (64) 1 3
(Uir)= 7IA?| 2{(s— 1)~ 5—[{(s)—F(e%,9)]
4 20
with F(z,s) being Jongiee’s function +F(e 27— 1)). 68)
N Finally, their derivatives with respect i@ are
F(zs)= 2 —. (65)
n=1 nS
d 1 2 2\ A= 20
%(UNN>:QA [3—(3+60'+40' )e ]
To find out an extremum of the action we need only the
time-average values of the kinetic and potential energies. 3 2 —ou
They have much simpler forms - 2402A [9-8(1+20+30)e
—(1+40)e 7] (69)

(T)= 1Azavz (66)
4 ’ and
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10 03

()

-w,(t)

()]

2 2
v-=C

FIG. 5. Soliton forms forJ=0.1, s=3.4 and three different
velocities obtained from the numerical calculatiorig) v2—c?
=0.015, (b) v?—c?=0.05, andc) v2—c?=0.1. These solitons are
indicated in Figs. 3 and 4 as diamonds.

FIG. 3. Kink amplitudeA vs velocityv for J=0.1 and different
s obtained from the variational approach with exponential trial
function (dashed linesand from numerical calculatior(full lines).

d (UL)= iJAZ £(S)—F(e~%.5) Using the following form of Jongie’s function:
LR/ — ’

_ |
4 F(e %s)=I(1-s)a" 1+2 L(s—1) ( ||)
—2aF(e*20,s—1)—§UZF(e*2”,s—2) .

we can find that in the limit of wide solitonghat is, small
o) the dependence of variational parameters versus velocity

Thus one can now find the parametérsand o solving the ~ t@kes on the form

(72)

(70

following equations minimizing the action: 3 112

o= (v2-c?)

Sits
(L} 0 and (L) 0, (71
and

where(L)=(T)—(Uyn) —{(U_gr). In Figs. 3 and 4 we plot 27u 12
the dependences of the kink amplitude and energy vs soliton A= —( S(uz—cz)> for s>5, (73
velocity v for solutions of Eqs(71) at different values of the >

long-range parametes. The results of numerical calcula- — Us—3)
tions described in Sec. V are sketched along with it. One can _ v°—C and
see the goodfor s=3.3) qualitative agreement between the 25721 (1—s)(s—4)(3s—10)J

results of the variational approach and numerical calcula-

fions. 9(s—3) (v2-¢c?)

A=— 235-10) o for 3<s<5,

(74)

where us=1+J3{(s—4). It is important that as<3.5 the
soliton energy grows,

Hsol,_vAZa_N(UZ_02)(28*7)/(5*3), (75)

when the soliton velocity approaches that of sound. One can
see from Fig. 4 that in this case the soliton energy does not
vanish at any velocity and there is an energy gap between the
spectra of plane waves and solitons.

In Fig. 5 we plot the shapes of the solitons at three dif-
ferent velocities indicated as diamonds in Figs. 3 and 4. The
characteristic property of these solitons is a slow decay of the
soliton tails discussed in detail in Sec. lIl.

. . . V. NUMERICAL METHOD
FIG. 4. Soliton energ vs velocityv for J=0.1 and different

s obtained from the variational approach with exponential trial  In this section we develop a numerical scheme for seeking
function (dashed lingsand from numerical calculatior(gull lines). solitary solutions of Eq.(38). There are several effective
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methods for this purpose; among those which have enjoyed VI. SUMMARY AND CONCLUSIONS

the widest application are spectfalf—29 and discrete func- We investigated the effect of harmonic power-law long-

tional minimization[30,31] methods. For our system dealing X ) ! : i :
range interactions in a chain with anharmonic nearest-

with dispersive long-range interactions the most effective . . :
method must be a spectral one. neighbor interactions. We have demonstrated that the power-

To be specific, the method we use is a combination of th law LRI's lead to a drastic change of the soliton properties.

methodg[27,28§. Let us look for solutions of Eq(38) with ?\lamely, we arrive at the Boussinesq equation onl_y dor
period 2M: in the largeM limit we expect to get good ap- >5. bu_t, fo_r example, fois=4 the_dyr_1am|cs of no_nlmear_
proximations to solitary waves which have infinite period.faXCItatIonS is governed by the Benjamin-Ono equation which

The equation of motiof38) is symmetric with respect to the is well known to possess algebraic soliton solutions. Gener-
transformatiorz— — z. Hence, the solutiow(z) can be cho- ally, for s>5 the soliton tails are exponential while for 3
sen to be symmetric.about tr’1e point 0 and may be repre- <s<5 they are algebraic. Unlike NNI or Kac-Baker LRI the

sented by an infinite cosine series. But to obtain the approxi?nergy of the soliton excitations fer3.5 does not vanish at

mate solution numerically, we must cut off the series. It iSvelocities close to that of sound. On the contrary, there is an

known from the harmonic approximation theory that the besfsatna?gy gap between spectra of plane waves and soliton
approximation ofw(z) is given by the function '

N
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and APPENDIX

27p | r 1 The long-distance behavior of nonlinear excitations is de-

Kj TONE 1 Zr:B, N=Mp-— 5 (78 termined by the Green function

The parametep may be arbitrary, buMp must be half o ) 1 Jw 2[1-cogk)]e*dk

i i i i Slv lZ =5 L]

integer to get integeX. Applying the Fourier transforr(i76) 27 ) 7 2[1— cogk)]+IQ(s,ik) —v2k2

to the equation of motiofi38) leads to (A1)

2,2 H \A _ _ = —
[v7kj —IQ(s,ik;) IW(kj) —2[1—coskj) JF (k) =0 where the dispersion functioQ(s,ik) is given by Eq.(10).

for j=1,2,...N, (799  For large|z| the main contribution to the integral in the
left-hand side of Eq(Al) is due to smalk. Hence we can
where extend the integration over the whole axis and taking into
account that in thek—0 limit the dispersion function
_ _ 2 N Q(s,ik) for s>3 has the form given by Eq13), write the
F(szW(k,—)—m E W2(zr)cos(ka,). (80 Green function as
r=—N
To complete the set of equations we need another equation. G(s,0,2)= — i - e'“dk
For s> 3, multiplying both sides of Eq(38) by z? and inte- " 2m) e , ea 1)
grating by parts, we get ve—ct+Iuglk[S P+ 1—2Msk
- - (A2)
[v2—J3¢(s—2)]W(0)—F(0)=0. (8
_ where
Equationg79)—(81) are nonlinear in the unknowMs(k;)
and are solved by a quadratically convergent Newton- 1+J3¢(s—4) for s>5
Raphson iteration. Usually convergence to the solutions of B
Egs. (79—(81) up to machine round-off at each step is Hs— 1_22 for 3<s<5 (A3)
reached during 8—12 iterations. The size of the syskm 25-s
varied between 75 and 500 and the paramptearied be-
tween 3 and 0.1, correspondingly. is the dispersion parameter. We consider the cé$egshen

In order to check the stability of the solutions found we 3<s<5 and us>0, and (i) when s=5 and ;<0 sepa-
have used them as initial conditions to the equations of morately.
tion (7), which were integrated by an eighth order Runge- (i) It is useful to represent the Green functigk®) in the
Kutta scheme with the step size contf8E]. form
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12 wheretheabbreviation

ls,
/Ls(vz_cz)

1 iaxg (A4) Ms
. glax /= _ A6
ls=5— : - , * N 12p2-c?) (A9)

27) % 1+ € se¢ ws/2)|q[s 3+ g?

G(s,v,2)=—

where
was used. To evaluate the integkalwe use Jordan’s lemma

J 2175732 with the contour in the upper right quarter of the compiex
- /53(w2-c?) T(sI((s+1)/2)’ plang. Thus taking into acgf)gunt ;hat inside the contour the
function 1] 1+ € sec(s/2)g> °+g“] for s<5 has no poles,
x=2zl/s, q=/k (A5) we obtain

1 f Iquq
; 0 1+ € sedws/2)q® 3+q?

l J e_Q\X‘dq ]_J‘oc ~ald ¢ (@)d A7)
— =] e ,
Tf — 2+ e sedws/2)q> 2 exp{—i (w/2)(s—3)} 7o S(dd
|
where the notation
fo(q)= €q°’ wherel'(s,x) is the incomplete gamma functi¢@5]. In the
S {1—q2— eq> 3 tar{ (7/2) s]}2+ 225~ interval g e (a,) the functionf(q) has ad-function-like

(A8)  form and the integral® can be approximated as
was used. We are interested in the case when the intensity of

the long-range part of the dispersion interaction is smiall: |<52>~f e~ s5(g2—1)dg= 1e‘|"|+o(e‘(““)\)‘\),
<1 and/or the velocity of the soliton is high>c. In this @ 2

case the parameteris small and the funct|oris(q? has a (A11)
sharp maximum afj=1. In its turn the functiore™ 9% If K(s)]

has two maxima af~1/x|, andgq=1 and a minimum at From Eqs.(A_2), (A5), (A10), and(A11) we obtgin that the
g=a<1 whose position in the limit of smak is almost Green function(Al) for 3<s<5 can be approximately rep-
independent ok. This suggests representing the intedcal '€Sented as the sum

as the sum
G(s,v,2)=Gg(s,v,2) + G (S,v,2), (A12)
=11 +132),
where
w_1 [*g-a
Is :; Oe fs(q)dqi (A9) 1
o(S,0,2)=— S—e 1Al (A13)
1 (= (ve—c%)/
I¥=— f e fy(a)da.
“ - I'(s—2)2t~s 1
Whenqge (0,a) the functionf¢(q) can be expanded into a Gulsv.2) F(s/2)F((1+s)/2) (v2—c?)2
power series and the integrbﬂl) can be represented in the
form 1 (. T(s—2alzl7y)
X|z|3’2\ - T(5-2) (Al4)

| (Sl)% i GJae_qlxlq(s_S)dq
0

& are the short-range part and the long-range part of the Green

function, respectively.
- el'(s—2)/ _TGs— 2,2|x]) , (A10) (i) Let us consider now the case=5. In accordance with
w|x|<5‘2)\ I'(s—2) Eq. (10) the Green functiorfA2) has the form
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1 (= ekzqk In the limit of smallJ we again can split the integral in the
5= . left-hand side of Eq(A16) in the same way as was done-
2 e 2 R2_ 2 1,2 ! ’ -

7 v®=c®= (J/12)k* In([k])+ 1k above and obtain that the Green functi@5) can be writ-
(A1S)  ten as the sum(Al2) with the short-range component

Gs(50,2) in the form

G(5v,2)=—

Applying Jordan’s lemma we get

G(5v,2) Gs(50v,2)=—\/ 3 exd —|z|V12(v*—c?)].

2 2
© *klZ‘ v°-—C

2_ A2 2 H _ A2
0 vi= et (J2)KIn(k) +i 2] 1k The long-range compone®, (5,v,2) is determined by Eq.
(A1l6)  (Al4) with s=5.
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