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Solitons in anharmonic chains with power-law long-range interactions
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We study the influence of long-range interactions with distance dependencer 2s of the elastic coupling
constant on the properties of pulse solitons in a one-dimensional anharmonic chain. Introducing the approxi-
mations of small amplitude and long wavelength, we have arrived at the Boussinesq equation fors.5 and the
Benjamin-Ono equation fors54. For s.5 the soliton tails are exponential while for 3,s<5 they are
algebraic. Fors<3.5 there is an energy gap between the spectra of plane waves and the soliton states.
@S1063-651X~98!00108-1#

PACS number~s!: 03.40.Kf, 62.30.1d, 63.20.Ry
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I. INTRODUCTION

The dynamics of nonlinear lattices and related solitonl
excitations have been intensively studied since the adven
solitons~for reviews, see, e.g.,@1–5#!. It has been found tha
anharmonic molecular chains with nearest-neighbor inte
tion ~NNI! or next-NNI @6# can bear solitonlike compressiv
and supersonic~for realistic interatomic potentials! excita-
tions which are solutions, in the long-wavelength approxim
tion, of the Boussinesq or Korteweg–de Vries~KdV! equa-
tions. The soliton excitations are very robust and propag
without energy loss. Moreover, their collisions are alm
elastic even beyond the range of validity of the continu
approximation. The foregoing renders the soliton excitatio
important for the coherent energy transfer@2# and recently
they have been invoked in order to explain the energy tra
port in DNA @7#.

But the DNA molecule is known to contain charge
groups with long-range Coulomb interactions between th
For a general lattice consisting of uncharged molecular u
one can have a situation where the dipole moment is v
small while the quadrupole moment is significant. Thus
dominant interaction between neighbors will be
quadrupole-quadrupole interaction, but one must also t
into account dipole-dipole interactions due to their mu
longer range.

The objective of the paper is to elucidate the effects
power-law long-range interactions~LRI! on the properties of
soliton excitations in anharmonic chains. The pioneering
per of Ishimori@8# on this subject already indicated an inte
esting feature of the power-law LRI system: namely, a cro
over takes place from sech-shaped solitons~which are
solutions to the Boussinesq or KdV equations!, prototype for
rapidly decreasing LRI, to algebraic solitons~solutions to the
Benjamin-Ono equation and related ones!, typical for sys-
tems with slowly decaying LRI’s. To be specific, Ishimo
studied nonlinear waves in a one-dimensional lattice with
Lennard-Jones (2n,n) intermolecular potential and showe
that the dynamics is governed by the Benjamin-Ono equa
in the casen52 or by the Korteweg–de Vries equation fo
n.4. Quite recently Gaididei, Mingaleev, Christiansen, a
PRE 581063-651X/98/58~3!/3833~10!/$15.00
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Rasmussen@9# have shown that the introduction of powe
law LRI into the nonlinear Schro¨dinger model produces ver
similar effects. It was also stated@10# that, although having
very much in common, the power-law LRI system bears f
tures essentially different from those of the exponential l
~called also Kac-Baker@11,12#! one. One-dimensional anha
monic systems, in their turn, should be expected to have
analogous behavior.

The solitary excitations in anharmonic chains with ha
monic Kac-Baker LRI’s have already been much stud
@13–17#. Remoissenet and Flytzanis@13# studied a renormal-
ization of the solitonic parameters due to the effect of LR
and they also investigated the effect of LRI’s on the stabi
of long-wavelength plane waves. Tchawona, Kofane, a
Bokosah@14# studied the influence of the LRI on solitons
diatomic chains and investigated both pulse and envel
solitons. Neuper, Gaididei, Flytzanis, and Mertens@15–17#
investigated pulse solitons in anharmonic chains with cu
or Toda NNI and exponentially decaying harmonic LRI’
They have demonstrated that the interplay of short- and lo
range interactions leads to the existence of two branche
solitons: low-velocity and high-velocity ones, separated b
gap. The low-velocity solitons exist at supersonic velocit
below some critical velocity. At the critical velocity th
shape of the soliton changes drastically: instead of the u
sech shape a crest soliton appears. This soliton is very s
lar to the peak solitons which were discussed earlier in
ferent contexts@18–22#. The high-velocity solitons are mad
up of two components: short- and long-range ones. The
terplay of these components leads to an unusual behavio
soliton amplitude and energy as a function of veloci
Bonart @23# investigated intrinsically localized modes, the
stability and optical absorption in a linear chain with lon
range Coulomb interaction.

We demonstrate in this paper that power law LRI leads
a drastic change of the soliton properties, compared to K
Baker LRI’s. Namely, there is only one type of solitons a
their tails can become algebraic. In a particular case the
namics is governed by the Benjamin-Ono equation which
well known to possess algebraic soliton solutions. Unl
NNI or Kac-Baker LRI’s, it is possible to have a situatio
3833 © 1998 The American Physical Society
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when the energy of the solitons does not vanish for veloci
close to the speed of sound. On the contrary, in this c
there is an energy gap between the spectra of plane w
and soliton states. The remainder of the paper is outline
follows. In Sec. II we derive the equation of motion for th
strain in the anharmonic lattice with power-law LRI using
quasicontinuum approach which is necessary in the cas
LRI @16,17#. We show that the dynamics of the system
governed by the Boussinesq equation only fors.5. In the
particular cases54 it is described by the Benjamin-On
equation. In Sec. III we investigate the long-distance beh
ior of the nonlinear excitations and show that the hig
velocity solitons have algebraic tails if the LRI’s deca
slower than 1/r 5. In Sec. IV we develop a variational ap
proach exploiting an exp-like function as trial function a
show that fors<3.5 there is an energy gap between t
spectra of plane waves and the soliton states. In Sec. V
describe the numerical method by which we obtained
soliton solutions in the previous sections. In Sec. VI we su
marize our conclusions.

II. SYSTEM AND EQUATIONS OF MOTION

We consider a chain of equally spaced particles of u
mass whose displacements from equilibrium areun(t) when
the equilibrium spacings are unity. The Hamiltonian of o
system is given by

H5T1UNN1ULR , ~1!

where

T5
1

2(n
S dun

dt D 2

~2!

is the kinetic energy and

UNN5(
n

V~un112un! ~3!

is the short-range part of the potential energy, with the
tential between first neighbors

V~w!5
1

2
w22

1

3
w3. ~4!

The long-range interaction is of the harmonic form

ULR5
1

2(n
(

m.n
Jm2n~un2um!2, ~5!

with a power dependence of the elastic coupling constan

Jm2n5J um2nu2s ~6!

on the distance between particles. Heres is a parameter in-
troduced to cover different physical situations including t
nearest-neighbor approximation (s5`), dipole-dipole inter-
action (s55), and the Coulomb interaction between charg
particles of a chain (s53).

The equations of motion for the relative displaceme
wn5un112un are
s
se
es
as

of

v-
-

e
e
-

it

r

-

d

s

d2

dt2
wn12F~wn!2F~wn11!2F~wn21!

1 (
mÞn

Jm2n~wn2wm!50, ~7!

where

F~w![
d

dw
V~w!5w2w2. ~8!

To obtain analytical solutions of Eq.~7! we pass to the con
tinuum limit treating n as a continuous variable@n→x,
wn(t)→w(x,t)] and keeping formally all terms in the Taylo
expansion in Eq.~7!. Then the equation can be cast in th
operator form

] t
2w~x,t !24 sinh2S ]x

2 DF„w~x,t !…1JQ~s,]x!w~x,t !50,

~9!

where]x and] t are the derivatives with respect tox and t,
respectively, and the operator

Q~s,]x!52 (
m51

`
12cosh~m]x!

ms
~10!

can be expressed in the long wave limit~that is fork!1) as
follows ~see, e.g.,@8#!:

Q~s,ik !'z~s22!k22
1

12
z~s24!k4 for s.5, ~11!

Q~5,ik !'z~3!k21
1

12
k4 lnuku, ~12!

Q~s,ik !'z~s22!k22nsukus21

1
s23

24~52s!
k4 for 3,s,5, ~13!

Q~4,ik ![
p2

6
k22

p

6
uku31

1

24
k4, ~14!

Q~3,ik !'2k2lnuku1
3

2
k21

1

144
k4, ~15!

where

ns5
212sp3/2

G~s/2!G„~s11!/2…cos~ps/2!
, ~16!

andz(s) is Riemann’s zeta function

z~s!5 (
n51

`

n2s . ~17!

From the dispersion relation for linear waves

V2~k!54 sin2S k

2D1JQ~s,ik !, ~18!
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one gets the sound velocity

c5A11Jz~s22!. ~19!

It should be remarked thatc increases with decreasing th
range parameters, and becomes infinite ats53 ~i.e., in the
chains with charged particles!. On the other hand, it is wel
known that in the chains with NNI@1,2# and Kac-Baker LRI
@15–17# there are only supersonic solitons. Thus, since
s53 every velocity is subsonic, the question for the ex
tence of soliton solutions must be raised in this case. In
paper we restrict ourselves to the cases.3. The nonlinear
dynamics of a chain with long-range Coulomb interaction
considered in@24#.

There are two cases when one can write down Eq.~9! in
a more convenient form, namely,s.5 ands54. First, con-
sider the cases.5 for which the operator

Q~s,]x!'2z~s22!]x
22

1

12
z~s24!]x

4 ~20!

has the same form as in the NNI approximation. In this c
the equation of motion~9! becomes the Boussinesq equati

S ] t
22c2]x

22
ms

12
]x

4Dw~x,t !1]x
2w2~x,t !50, ~21!

where

ms511Jz~s24! for s.5 ~22!

is the dispersion parameter. It is well known that the Bou
inesq equation is integrable with a sech-shaped soliton s
tion

w~x,t !5
w0

cosh2@s~x2vt !#
, ~23!

wherev is the soliton velocity,

w052
3

2
~v22c2! ~24!

is the strain amplitude, and

s5A 3

ms
~v22c2! ~25!

is the inverse width of the soliton. The kink amplitude

A5E
2`

`

w~z,t !dz52A3ms~v22c2! ~26!

vanishes when the soliton velocity nears the speed of so
Since the Hamiltonian~1! of the system takes the form

H5
1

2E2`

`

dxH ~] tu!21c2~]xu!22
ms

12
~]x

2u!22
2

3
~]xu!3J ,

~27!

the energy of the soliton~23! near the speed of sound is
r
-
is

s

e

-
u-

d.

Hsol'A3msS c22
ms

30D ~v22c2!3/2. ~28!

For s54, using the Hilbert transform

H$ f ~x!%5
1

p
PE

2`

` f ~y!dy

y2x
, ~29!

where P denotes the Cauchy principal value, we can rew
Eq. ~14! in the form

Q~4,]x![2
p2

6
]x

22
p

6
H]x

31
1

24
]x

4. ~30!

Thus the equation of motion~9! becomes the Hilbert-
Boussinesq equation

S ] t
22c2]x

22
Jp

6
H]x

3Dw~x,t !1]x
2w2~x,t !50, ~31!

which can be reduced to the integrable Benjamin-Ono fo
Contrary to the former case (s.5) this equation is well
known to have algebraic soliton solutions

w~x,t !5
w0

11s2~x2vt !2
, ~32!

with the soliton velocityv, the strain amplitude

w0522~v22c2!, ~33!

and the inverse width of the soliton

s5
6

pJ
~v22c2!. ~34!

In contrast to Eq.~26! for the cases.5, the kink amplitude
for s54,

A52
p2

3
J, ~35!

does not depend on the velocityv. Since the Hamiltonian~1!
of the system takes the form

H5
1

2E2`

`

dxH ~] tu!21c2~]xu!2

2
Jp

6
~]x

2u!~H]xu!2
2

3
~]xu!3J , ~36!

the energy of the soliton~32! near the speed of sound is

Hsol'
p2c2J

3
~v22c2!. ~37!

In the next section we extend these results and show
the solitonlike solutions have algebraic tails in the entire
terval 3,s<5.
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III. NONLINEAR EXCITATIONS AT HIGH VELOCITIES

Seeking solutions with a stationary profilew(z)5w(x
2vt) (v being the soliton velocity! we can write the equa
tion of motion ~7! as follows:

v2
d2

dz2
w~z!12F„w~z!…2F„w~z11!…2F„w~z21!…

1 (
mÞz

Jm2z„w~z!2w~m!…50. ~38!

To investigate the asymptotic behavior of solitonlike so
tions it is convenient to rewrite Eq.~38! in the form

w~z!5(
m

G~s,v,z2m! w2~m![Ĝ w2, ~39!

where

G~s,v,z!5
1

2pE2p

p 2@12cos~k!#e2 ikzdk

2@12cos~k!#1JQ~s,ik !2v2k2

~40!

is the Green function. For largeuzu the main contribution to
the integral of Eq.~40! is given by small values ofk. Hence
we can extend the integration over the whole axis and,
plying Jordan’s lemma and taking into account Eqs.~11!–
~15!, we can write the Green function~40! for uzu@1 ands
.5 as

G~s,v,z!52
1

2 ~v22c2!l s

e2 uzu/l s, ~41!

where

l s5A ms

12~v22c2!
~42!

is the length scale of the Boussinesq soliton withms deter-
mined by Eq.~22!. We are interested in the case when t
intensity of the long-range part of the dispersion interact
is small: J!1 and/or the velocity of the soliton is high:v
@c. In this case the Green function~40! for 3,s<5 can be
approximately represented in the form~see the Appendix for
details!

G~s,v,z!5GS~s,v,z!1GL~s,v,z!, ~43!

where the short-range partGS(s,v,z) of the Green function
coincides with the Green function~41!–~42! but with

ms512
J

2

s23

52s
for 3,s,5, ~44!

and the long-range part of the Green function has the fo
-

p-

n

GL~s,v,z!52
G~s22! 212sAp

G~s/2!G„~11s!/2…~v22c2!2

3
J

uzus22S 12
G~s22,auzu/l s!

G~s22! D , ~45!

whereG(s,x) is the incomplete gamma function@25#.
So, only for s.5 does the Green function~40! decay

exponentially foruzu→`. When 3,s<5 only for interme-
diate distancesuzu does the Green function behave in th
same way as in the system with short-range dispersion.
for uzu→` the exponential decay is replaced by a power la
This suggests that in the systems with the dispersive par
eter s in the interval 3,s<5 there are two characteristi
length scales: the usual length scale of the Boussinesq so
l s and the length scale coupled with the existence of
long-range dispersion interaction. Therefore we will see
solution of Eq.~39! as the sum

w~z!5wS~z!1wL~z!, ~46!

wherewS(z) is the short-range component of the strain a
wL(z) is the long-range one. HerewS(z) will dominate the
strain in the center, whilewL(z) will dominate in the tails.
Inserting Eq.~46! into Eq. ~39! yields

wS1wL5~ĜS1ĜL! ~wS
212 wS wL1wL

2!. ~47!

Assuming that the functionwS(z) satisfies the equation

wS5ĜS ~wS
212 wS wL! ~48!

we obtain from Eq.~47! an equation forwL(z) in the form

wL5ĜS wL
2 1 ĜL ~wS

212 wS wL1wL
2!. ~49!

It is seen from Eqs.~41! and ~48! that the equation for the
short-range component may be represented in an equiva
form

2
ms

12
]z

2wS~z!1@v22c212wL~z!#ws~z!1wS
2~z!50.

~50!

We solve Eq.~50! using the multiple-scale method@26# ~see
@17# for details!, and obtain for the short-range compone
wS(z) the expression

wS~z!52
3

2
@v22c212wL~z!#

3sech2S 1

2l s
E

0

z

dz̄A112
wL~ z̄!

v22c2D . ~51!

The long-range part of the Green function~45! is propor-
tional to the small parameterJ. Therefore neglecting term
of the order ofJn(n.1) one can linearize Eq.~49! and write
approximately

wL~z!'ĜLwS
2'

9

4
~v22c2!2GL~s,v,z!, ~52!
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where we also took into account the big difference in
short-range scalel s and the length scale of the long-rang
part of the Green functionGL(s,v,z). Substituting Eq.~45!
into Eq. ~52! we see that the asymptotics (uzu→`) of the
solitons at high velocities and 3,s<5 is given by the ex-
pression

w~z!'2
9ApG~s22!

211sG~s/2!G„~s11!/2…

J

uzus22
. ~53!

Thus we can conclude here that only in the cases.5 do the
tails of the solitons have the usual exponential form. In
systems with long-range harmonic interactions with 3,s<5
the solitons have algebraic tails. Figure 1 shows the lo
distance behavior of soliton tails for different values of t
range parameters. It is seen that the form of the tails pre
dicted by Eq.~53! is in good agreement with the results
numerical simulations described in Sec. V. Moreover, Fig
shows a good fit of Eq.~53! to the numerically calculated

FIG. 1. Plot of minus strain atJ50.1 andv22c250.1 for dif-
ferents obtained from numerical calculations. The soliton tails ha
a power dependence vs lattice site fors<5.

FIG. 2. Amplitude in the soliton tail at a range of 100 lattic
sites for J50.1 ands53.3 obtained from numerical calculation
~circles! and its analytical high-velocity limit~dashed line! from Eq.
~53!.
e

e

-

2

amplitudes of the soliton tails. It is worth remarking that f
3,s<5 the amplitude of the soliton tails tends to a nonze
value at high velocities.

IV. VARIATIONAL APPROACH

In what follows we shall develop a variational approa
to the investigation of the qualitative characteristics of t
solitons under consideration. It was shown in the preced
section that the long-distance behavior ofu(z) depends on
the value of the dispersive parameters. Only for s.5 are
the tails of u(z) exponential while fors,5 the tails are
algebraic. But the behavior for intermediate distances is
scribed by the sech-like function~51! which smoothly de-
pends on the dispersive parameters. This suggests looking
for an approximate description of the system in the fram
work of variational approach with the trial function in th
form

un~ t !5
1

2
A~12e22sun2x~ t !u!u„n2x~ t !…, ~54!

where

u~x!5H 1 for x.0

21 for x,0.
~55!

In other words, we suppose here that the main contri
tion is due to the short-range exponential-like partus(z) of
the solution. This assumption is confirmed by the go
agreement between the results of variational approach
the numerical calculations.

Substituting Eq.~54! into the Lagrangian

L5T2UNN2ULR , ~56!

we arrive at some effective LagrangianL(x,ẋ). In principle,
such Lagrangians demonstrate two qualitatively differ
types of motion, namely, a pinning of the excitation at so
particle and a moving of the excitation along the chain. B
in our case, considering the supersonic solitons, we may
strict ourselves to the second case only. To be specific, le
consider a soliton moving with an average velocityv.c.
Thus the time dependent parameterx(t) allows the form
x(t)5vt1h(t) where an average value ofh @0<h(t),1#
equals1

2 . We are interested now only in the average para
eters of the soliton motion, which can be obtained from mi
mizing the action

S5
1

TE0

T

dtL~x,ẋ!5
1

TEx~0!

x~T!dx

ẋ
L~x,ẋ!

.
1

vTEx~0!

x~T!

dxL~x,v !5
1

v
^L&, ~57!

where the angle brackets denote the average value

^ f ~ t !&5E
0

1

dh f ~h!. ~58!
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The kink amplitudeA and the inverse width of the soliton
s, are the variational parameters to be determined as fu
tions of the soliton velocityv. Substituting Eq.~54! into Eqs.
~2! and ~3! we get

T5
1

2
A2s2

cosh@2s~122h!#

sinh~2s! S dx

dt D
2

~59!

and

UNN5
1

2
A2S e22s

sinh2~s!

sinh~2s!
cosh@2s~122h!#

1$12e2s cosh@s~122h!#%2D
2

1

3
A3S e23s

sinh3~s!

sinh~3s!
cosh@3s~122h!#

1$12e2s cosh@s~122h!#%3D . ~60!
he
ie
To calculate the long-range part of the potential energy~5!
we use the discrete Fourier transform

ũ~k!5(
n

eiknun , un5
1

2pE2p

p

e2 iknũ~k!dk, ~61!

which allows us to rewrite Eq.~5! in the form

ULR5
J

4pE2p

p

dkuũ~k!u2Q~s,ik !, ~62!

where the spectrum functionQ(s,ik) is defined by Eq.~10!.
Using
uũ~k!u25
1

4
A2S 2

12cos~k!
2

4 cosh~s!cosh@s~122h!#

cosh~2s!2cos~k!

1
11cosh~2s!cosh@2s~122h!#2$cosh~2s!1cosh@2s~122h!#%cos~k!

@cosh~2s!2cos~k!#2 D , ~63!
we obtain for the long-range part of the potential energy

ULR5
1

4
JA2S 2z~s21!1F~e22s,s21!

2
4 cosh~s!cosh@s~122h!#2cosh@2s~122h!#

sinh~2s!

3@z~s!2F~e22s,s!# D , ~64!

with F(z,s) being Jonqie`re’s function

F~z,s!5 (
n51

`
zn

ns
. ~65!

To find out an extremum of the action we need only t
time-average values of the kinetic and potential energ
They have much simpler forms

^T&5
1

4
A2sv2, ~66!
s.

^UNN&5
1

2
A2S 11

1

2
e22s2

3

4s
~12e22s! D

2
1

3
A3S 11

3

2
e22s2

1

8s
~928e22s2e24s! D ,

~67!

and

^ULR&5
1

4
JA2S 2z~s21!2

3

2s
@z~s!2F~e22s,s!#

1F~e22s,s21! D . ~68!

Finally, their derivatives with respect tos are

d

ds
^UNN&5

1

8s2
A2@32~316s14s2!e22s#

2
1

24s2
A3@928~112s13s2!e22s

2~114s!e24s# ~69!

and
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d

ds
^ULR&5

3

8s2
JA2S z~s!2F~e22s,s!

22sF~e22s,s21!2
4

3
s2F~e22s,s22! D .

~70!

Thus one can now find the parametersA ands solving the
following equations minimizing the action:

]

]s
^L&50 and

]

]A
^L&50, ~71!

where^L&5^T&2^UNN&2^ULR&. In Figs. 3 and 4 we plot
the dependences of the kink amplitude and energy vs so
velocity v for solutions of Eqs.~71! at different values of the
long-range parameters. The results of numerical calcula
tions described in Sec. V are sketched along with it. One
see the good~for s>3.3) qualitative agreement between t
results of the variational approach and numerical calcu
tions.

FIG. 3. Kink amplitudeA vs velocityv for J50.1 and different
s obtained from the variational approach with exponential tr
function ~dashed lines! and from numerical calculations~full lines!.

FIG. 4. Soliton energyH vs velocityv for J50.1 and different
s obtained from the variational approach with exponential tr
function ~dashed lines! and from numerical calculations~full lines!.
n

n

-

Using the following form of Jonqie`re’s function:

F~e2a,s!5G~12s!as211(
l 50

`

z~s2 l !
~2a! l

l !
~72!

we can find that in the limit of wide solitons~that is, small
s) the dependence of variational parameters versus velo
takes on the form

s5S 3

5ms
~v22c2! D 1/2

and

A52S 27ms

5
~v22c2! D 1/2

for s.5, ~73!

s5S v22c2

2s22G~12s!~s24!~3s210!J
D 1/~s23!

and

~74!

A52
9~s23!

2~3s210!

~v22c2!

s
for 3,s,5,

wherems511Jz(s24). It is important that ats,3.5 the
soliton energy grows,

Hsol;A2s;~v22c2!~2s27!/~s23!, ~75!

when the soliton velocity approaches that of sound. One
see from Fig. 4 that in this case the soliton energy does
vanish at any velocity and there is an energy gap between
spectra of plane waves and solitons.

In Fig. 5 we plot the shapes of the solitons at three d
ferent velocities indicated as diamonds in Figs. 3 and 4. T
characteristic property of these solitons is a slow decay of
soliton tails discussed in detail in Sec. III.

V. NUMERICAL METHOD

In this section we develop a numerical scheme for seek
solitary solutions of Eq.~38!. There are several effectiv

l

l

FIG. 5. Soliton forms forJ50.1, s53.4 and three different
velocities obtained from the numerical calculations:~a! v22c2

50.015,~b! v22c250.05, and~c! v22c250.1. These solitons are
indicated in Figs. 3 and 4 as diamonds.
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methods for this purpose; among those which have enjo
the widest application are spectral@27–29# and discrete func-
tional minimization@30,31# methods. For our system dealin
with dispersive long-range interactions the most effect
method must be a spectral one.

To be specific, the method we use is a combination of
methods@27,28#. Let us look for solutions of Eq.~38! with
period 2M : in the largeM limit we expect to get good ap
proximations to solitary waves which have infinite perio
The equation of motion~38! is symmetric with respect to th
transformationz→2z. Hence, the solutionw(z) can be cho-
sen to be symmetric about the pointz50 and may be repre
sented by an infinite cosine series. But to obtain the appr
mate solution numerically, we must cut off the series. It
known from the harmonic approximation theory that the b
approximation ofw(z) is given by the function

W~z!5
1

2
W̃~0!1(

j 51

N

W̃~kj !cos~kjz!, ~76!

where

W̃~kj !5
2

2N11 (
r 52N

N

W~zr !cos~kjzr !, ~77!

and

kj5
2pp

2N11
j , zr5

r

p
, N5Mp2

1

2
. ~78!

The parameterp may be arbitrary, butMp must be half
integer to get integerN. Applying the Fourier transform~76!
to the equation of motion~38! leads to

@v2kj
22JQ~s,ik j !#W̃~kj !22@12cos~kj !#F̃~kj !50

for j 51, 2, . . . ,N, ~79!

where

F̃~kj !5W̃~kj !2
2

2N11 (
r 52N

N

W2~zr !cos~kjzr !. ~80!

To complete the set of equations we need another equa
For s.3, multiplying both sides of Eq.~38! by z2 and inte-
grating by parts, we get

@v22Jz~s22!#W̃~0!2F̃~0!50. ~81!

Equations~79!–~81! are nonlinear in the unknownsW̃(kj )
and are solved by a quadratically convergent Newt
Raphson iteration. Usually convergence to the solutions
Eqs. ~79!–~81! up to machine round-off at each step
reached during 8–12 iterations. The size of the systemN
varied between 75 and 500 and the parameterp varied be-
tween 3 and 0.1, correspondingly.

In order to check the stability of the solutions found w
have used them as initial conditions to the equations of m
tion ~7!, which were integrated by an eighth order Rung
Kutta scheme with the step size control@32#.
d

e

e

.
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VI. SUMMARY AND CONCLUSIONS

We investigated the effect of harmonic power-law lon
range interactions in a chain with anharmonic neare
neighbor interactions. We have demonstrated that the pow
law LRI’s lead to a drastic change of the soliton properti
Namely, we arrive at the Boussinesq equation only fos
.5 but, for example, fors54 the dynamics of nonlinea
excitations is governed by the Benjamin-Ono equation wh
is well known to possess algebraic soliton solutions. Gen
ally, for s.5 the soliton tails are exponential while for
,s<5 they are algebraic. Unlike NNI or Kac-Baker LRI th
energy of the soliton excitations fors<3.5 does not vanish a
velocities close to that of sound. On the contrary, there is
energy gap between spectra of plane waves and so
states.
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APPENDIX

The long-distance behavior of nonlinear excitations is
termined by the Green function

G~s,v,z!5
1

2pE2p

p 2@12cos~k!#eikzdk

2@12cos~k!#1JQ~s,ik !2v2k2
,

~A1!

where the dispersion functionQ(s,ik) is given by Eq.~10!.
For large uzu the main contribution to the integral in th
left-hand side of Eq.~A1! is due to smallk. Hence we can
extend the integration over the whole axis and taking i
account that in thek→0 limit the dispersion function
Q(s,ik) for s.3 has the form given by Eq.~13!, write the
Green function as

G~s,v,z!52
1

2pE2`

` eikzdk

v22c21Jnsukus231
1

12
msk

2

,

~A2!

where

ms5H 11Jz~s24! for s.5

12
J

2

s23

52s
for 3,s,5

~A3!

is the dispersion parameter. We consider the cases~i! when
3,s,5 and ms.0, and ~ii ! when s.5 and ms,0 sepa-
rately.

~i! It is useful to represent the Green function~A2! in the
form



the
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G~s,v,z!52A 12

ms~v22c2!
I s ,

~A4!

I s5
1

2pE2`

` eiqxdq

11e sec~ps/2!uqus231q2
,

where

e5
J

l s
s23~v22c2!

212sp3/2

G~s/2!G„~s11!/2…
,

x5z/l s , q5l sk ~A5!
ty
l:

a
e

wheretheabbreviation

l s5A ms

12~v22c2!
~A6!

was used. To evaluate the integralI s we use Jordan’s lemma
with the contour in the upper right quarter of the complexq
plane. Thus taking into account that inside the contour
function 1/@11e sec(ps/2)qs231q2# for s,5 has no poles,
we obtain
I s5
1

p
Re E

0

` eiqxdq

11e sec~ps/2!qs231q2

5
1

p
Im E

0

` e2quxudq

12q21e sec~ps/2!qs23 exp$2 i ~p/2!~s23!%
5

1

pE0

`

e2quxu f s~q!dq, ~A7!
-

reen
where the notation

f s~q!5
eqs23

$12q22eqs23 tan@~p/2! s#%21e2q2~s23!

~A8!

was used. We are interested in the case when the intensi
the long-range part of the dispersion interaction is smalJ
!1 and/or the velocity of the soliton is high:v@c. In this
case the parametere is small and the functionf s(q) has a
sharp maximum atq.1. In its turn the functione2quxu f s(q)
has two maxima atq;1/uxu, and q.1 and a minimum at
q5a<1 whose position in the limit of smalle is almost
independent ofx. This suggests representing the integralI s
as the sum

I s5I s
~1!1I s

~2! ,

I s
~1!5

1

p E
0

a

e2quxu f s~q!dq, ~A9!

I s
~2!5

1

p E
a

`

e2quxu f s~q!dq.

When qP(0,a) the function f s(q) can be expanded into
power series and the integralI s

(1) can be represented in th
form

I s
~1!'

1

p
eE

0

a

e2quxuq~s23!dq

5
eG~s22!

puxu~s22! S 12
G~s22,auxu!

G~s22! D , ~A10!
of

whereG(s,x) is the incomplete gamma function@25#. In the
interval qP(a,`) the function f s(q) has ad-function-like
form and the integralI s

(2) can be approximated as

I s
~2!'E

a

`

e2quxud~q221!dq5
1

2
e2uxu1O~e2~11a!uxu!.

~A11!

From Eqs.~A2!, ~A5!, ~A10!, and ~A11! we obtain that the
Green function~A1! for 3,s,5 can be approximately rep
resented as the sum

G~s,v,z!5GS~s,v,z!1GL~s,v,z!, ~A12!

where

GS~s,v,z!52
1

2~v22c2!l s

e2 uzu/l s, ~A13!

GL~s,v,z!52JAp
G~s22!212s

G~s/2!G„~11s!/2…

1

~v22c2!2

3
1

uzus22S 12
G~s22,auzu/l s!

G~s22! D ~A14!

are the short-range part and the long-range part of the G
function, respectively.

~ii ! Let us consider now the cases55. In accordance with
Eq. ~10! the Green function~A2! has the form
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G~5,v,z!52
1

2pE2`

` eikzdk

v22c22 ~J/12!k2 ln~ uku!1 1
12 k2

.

~A15!

Applying Jordan’s lemma we get

G~5,v,z!

52
1

p
Im E

0

` e2kuzudk

v22c21 ~J/12!k2@ ln~k!1 i p/2#2 1
12 k2

.

~A16!
s.

. A

O

O

s,

s,
In the limit of smallJ we again can split the integral in th
left-hand side of Eq.~A16! in the same way as was done
above and obtain that the Green function~A15! can be writ-
ten as the sum~A12! with the short-range componen
GS(5,v,z) in the form

GS~5,v,z!52A 3

v22c2
exp@2uzuA12~v22c2!#.

~A17!

The long-range componentGL(5,v,z) is determined by Eq.
~A14! with s55.
s,

n-

s-
d,

,
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